Wikipedia founder Jimmy Wales
Snake
From Wikipedia, the free encyclopedia
"Ophidian" redirects here. For the professional wrestler, see The Osirian Portal.
This article is about the animal. For other uses, see Snake (disambiguation).
| Snakes Fossil range: 145–0 Ma Cretaceous – Recent | |
|---|---|
| Coast garter snake, Thamnophis elegans terrestris | |
| Scientific classification [e ] | |
| Kingdom: | Animalia |
| Phylum: | Chordata |
| Class: | Reptilia |
| Order: | Squamata |
| Superfamily: | Varanoidea |
| (unranked): | Pythonomorpha |
| Suborder: | Serpentes Linnaeus, 1758 |
| Infraorders | |
| |
| World range of snakes (rough range of sea snakes in blue) | |
Living snakes are found on every continent except Antarctica and on most islands. Fifteen families are currently recognized, comprising 456 genera and over 2,900 species.[1][2] They range in size from the tiny, 10 cm-long thread snake to pythons and anacondas of up to 7.6 metres (25 ft) in length. The recently discovered fossil Titanoboa was 15 metres (49 ft) long. Snakes are thought to have evolved from either burrowing or aquatic lizards during the Cretaceous period (c 150 Ma). The diversity of modern snakes appeared during the Paleocene period (c 66 to 56 Ma).
Most species are nonvenomous and those that have venom use it primarily to kill and subdue prey rather than for self-defense. Some possess venom potent enough to cause painful injury or death to humans. Nonvenomous snakes either swallo
Evolution
| A phylogenetic overview of the extant groups
|
Primitive groups among the modern snakes, pythons and boas, have vestigial hind limbs: tiny, clawed digits known as anal spurs, which they use to grasp during mating.[7]:11[12] Leptotyphlopidae and Typhlopidae are other groups where remnants of the pelvic girdle are present, sometimes appearing as horny projections when visible. The frontal limbs are nonexistent in all snakes, and this loss is associated with the evolution of the Hox genes controlling limb morphogenesis. The axial skeleton of the snakes' common ancestor, like most other tetrapods, had regional specializations consisting of cervical (neck), thoracic (chest), lumbar (lower back), sacral (pelvic) and caudal (tail) vertebrae. The Hox gene expression in the axial skeleton responsible for the development of the thorax became dominant early in snake evolution and as a result, the vertebrae anterior to the hindlimb buds (when present) all have the same thoracic-like identity (except from the atlas, axis and one to three neck vertebrae), making most of the snake's skeleton being composed of an extremely extended thorax. Ribs are found exclusively on the thoracic vertebrae. The neck, lumbar and pelvic vertebrae are very reduced in number (only two to ten lumbar and pelvic vertebrae are still present), while only a short tail remains of the caudal vertebrae, although the tail is still long enough to be of good use in many species, and is modified in some aquatic and tree dwelling species.
An alternative hypothesis, based on morphology, suggests the ancestors of snakes were related to mosasaurs — extinct aquatic reptiles from the Cretaceous—which in turn are thought to have derived from varanid lizards.[8] Under this hypothesis, the fused, transparent eyelids of snakes are thought to have evolved to combat marine conditions (corneal water-loss through osmosis), while the external ears were lost through disuse in an aquatic environment, ultimately leading to an animal similar in appearance to sea snakes of today. In the Late Cretaceous, snakes recolonized land to appear as they are today. Fossil snake remains are known from early Late Cretaceous marine sediments, which is consistent with this hypothesis, particularly as they are older than the terrestrial Najash rionegrina. Similar skull structure, reduced/absent limbs, and other anatomical features found in both mosasaurs and snakes lead to a positive cladistical correlation, although some of these features are shared with varanids. In recent years, genetic studies have indicated snakes are not as closely related to monitor lizards as it was once believed, and therefore not to mosasaurs, the proposed ancestor in the aquatic scenario of their evolution. However, there is more evidence linking mosasaurs to snakes than to varanids. Fragmentary remains that have been found from the Jurassic and Early Cretaceous indicate deeper fossil records for these groups, which may eventually refute either hypothesis.
The great diversity of modern snakes appeared in the Paleocene, correlating with the adaptive radiation of mammals following the extinction of the nonavian dinosaurs. One of the more common groups today, the colubrids, became particularly diverse due to their preying on rodents, a mammal group that has been particularly successful. There are over 2,900 species of snakes ranging as far northward as the Arctic Circle in Scandinavia and southward through Australia and Tasmania.[8] Snakes can be found on every continent (with the exception of Antarctica), dwelling in the sea, and as high as 16,000 feet (4,900 m)in the Himalayan Mountains of Asia.[8][13]:143 There are numerous islands from which snakes are absent, such as Ireland, Iceland, and New Zealand.[13]:143
Taxonomy
All modern snakes are grouped within the suborder Serpentes in Linnean taxonomy, part of the order Squamata, though their precise placement within squamates is controversial.[1]There are two infraorders of Serpentes: Alethinophidia and Scolecophidia.[1] This separation is based on morphological characteristics and mitochondrial DNA sequence similarity. Alethinophidia is sometimes split into Henophidia and Caenophidia, with the latter consisting of "colubroid" snakes (colubrids, vipers, elapids, hydrophiids, and attractaspids) and acrochordids, while the other alethinophidian families comprise Henophidia.[14] While not extant today, the Madtsoiidae, a family of giant, primitive, python-like snakes, was around until 50,000 years ago in Australia, represented by genera such as Wonambi.
There are numerous debates in the systematics within the group. For instance, many sources classify Boidae and Pythonidae as one family, while some keep the Elapidae and Hydrophiidae (sea snakes) separate for practical reasons despite their extremely close relation.
Recent molecular studies support the monophyly of the clades of modern snakes, scolecophidians, typhlopids + anomalepidids, alethinophidians, core alethinophidians, uropeltids (Cylindrophis, Anomochilus, uropeltines), macrostomatans, booids, boids, pythonids and caenophidians.[6]
w prey alive or kill by constriction.
No comments:
Post a Comment