| Women in the Aegean Minoan Snake Goddess Christopher L. C. E. Witcombe | |
|---|---|
8. Snakes, Egypt, Magic & Women Following his discussion of the snake as a household deity, Evans comments on the similarity in Minoan Snake Goddess from Knossos, Crete the position of the snake raising its head above the hat of the principal "Snake Goddess" (Evans here ignoring the fact that this particular detail of the figurine is his own reconstruction - see Evans's "Snake Goddess") and that of the Egyptian uraeus (rearing cobra snake) on the head of Hathor and other Egyptian goddesses. In particular, Evans tentatively links the "Snake Goddess" with the Egyptian Goddess Wazet (i.e. Wadjyt), the snake goddess of the Nile Delta, but does not pursue the connection. As was noted above, sacred to Wadjyt was the cobra snake which in the form of the uraeus became the distinctive emblem of the Kingdom of Lower Egypt and the Egyptian royal house. Wadjyt was principally the snake goddess of Buto, or Pe, her ancient sanctuary in the Nile Delta. She was also associated with the city known to the Greeks as Aphroditopolis (the city of Aphrodite; the signs of the nome of Aphroditopolis were a snake and a feather), with whom Wadjyt was identified. Like Aphrodite, Wadjyt was a goddess of fertility. Later, she was assimilated with Isis. In her snake form, Wadjyt is sometimes identified as Weret-hekau, "Great of Magic", who, as the uraeus, a manifestation of the solar eye, rises from the forehead of Horus (the pharaoh). As the uraeus, Wadjyt and Weret-hekau were identified with the eye of Re. The Goddesses Tefnut and Bastet were also identified with the eye of Re. As both were commonly shown lioness-headed, so Wadjyt and Weret-hekau were also sometimes represented with lioness-heads. This has sometimes caused all these goddesses to be identified with the lioness goddess Sekhmet. Originally simply an epithet applied to goddesses, crowns, and uraeus, Weret-hekau was also a goddess in her own right. Her principal tasks were to protect the creator sun god and to act as foster-mother to the pharaohs. Weret-hekau's name, together with snake decoration and solar eyes, occasionally appears on magical implements such as model throwsticks (used by the deceased to defend themselves against malevolent spirits and demons), and apotropaic wands (or 'magic knives') made of ivory which seem to have been used to protect women, especially pregnant or nursing women, and women with children. Among the papyri found in a cache of magical objects in a tomb under the Ramesseum (see below) is one devoted to spells for women and children. Magic was a beneficial force in Egypt and was used widely in all periods. The earliest attested magical texts are in the Pyramid Texts composed late in Dynasty V and Dynasty VI in the Old Kingdom. The god of magic, Heka (heka is also the Egyptian word for 'magic'), to whom shrines were dedicated in Lower Egypt, was depicted in human form (sometimes with a snake head) holding a snake-shaped wand in each hand. The snake wand, which was also used by magicians, probably represented Weret-hekau. Wooden statuette of a woman holding metal snakes Dynasty XIII (1786-1633 BCE) (The Manchester Museum, University of Manchester, England) The combination of snake wands and the lioness head is seen in a wooden statuette of woman with movable arms found in 1896 by James Edward Quibell in a cache of magical objects in a tomb dating to Dynasty XIII (1786-1633 BCE) discovered under the Ramesseum, the mortuary temple of Ramesses II (1290-1224 BCE), at Thebes. The statuette, which holds a metal snake-wand in each hand, is thought to represent a female sau, a type of magician, who could supply magical protection (the Egyptian verb sa means "to protect") both by making charms and amulets, and by using spoken and written charms. Besides the statuette, the cache also included some magico-medical papyri and a twisting bronze snake wand (now in the Fitzwilliam Museum, Cambridge) which was evidently intended to be held in the middle where its body flattens out. It is approximately twice the size of those held by the wooden figurine. Possibly the Minoan votary is also holding snake-wands. The sau statuette is usually described as representing either the beneficent lion-demon later known as Bes (a god often called upon to protect women in childbirth and their infants), or a woman playing the role of the demon in a magical rite. However, the combination of lioness mask and snakes also suggests that she might be representing or serving in some way, perhaps as a votary or a priestess, the goddess Wadjyt. Her nudity may indicate a connection with fertility figurines (a group of which were found in the same cache), or that she is a religious dancer who helped in the protective rites. An interesting feature of the Egyptian statuette is its moveable arms which could be raised so that the metal snakes in each hand are held up in a manner reminiscent of the Minoan Snake Goddess. | |
Tuesday, November 30, 2010
Minoan Snake Goddess
Rom Whitaker,
Symbolism
Symbolism
Main article: Serpent (symbolism)
In Egyptian history, the snake occupies a primary role with the Nile cobra adorning the crown of the pharaoh in ancient times. It was worshipped as one of the gods and was also used for sinister purposes: murder of an adversary and ritual suicide (Cleopatra).Three medical symbols involving snakes that are still used today are Bowl of Hygieia, symbolizing pharmacy, and the Caduceus and Rod of Asclepius, which are symbols denoting medicine in general.[32]
India is often called the land of snakes and is steeped in tradition regarding snakes.[73] Snakes are worshipped as gods even today with many women pouring milk on snake pits (despite snakes' aversion for milk).[73] The cobra is seen on the neck of Shiva and Vishnu is depicted often as sleeping on a seven-headed snake or within the coils of a serpent.[74] There are also several temples in India solely for cobras sometimes called Nagraj (King of Snakes) and it is believed that snakes are symbols of fertility. There is a Hindu festival called Nag Panchami each year on which day snakes are venerated and prayed to. See also Nāga.
In India there is another mythology about snakes. Commonly known in Hindi as "Ichchhadhari" snakes. Such snakes can take the form of any living creature, but prefer human form. These mythical snakes possess a valuable gem called "Mani", which is more brilliant than diamond. There are many stories in India about greedy people trying to possess this gem and ending up getting killed.
The Ouroboros is a symbol associated with many different religions and customs, and is claimed to be related to Alchemy. The Ouroboros or Oroboros is a snake eating its own tail in a clock-wise direction (from the head to the tail) in the shape of a circle, representing manifestation of one's own life and rebirth, leading to immortality.
The snake is one of the 12 celestial animals of Chinese Zodiac, in the Chinese calendar.
Many ancient Peruvian cultures worshipped nature.[75] They emphasized animals and often depicted snakes in their art.[76]
Religion
A snake associated with Saint Simeon Stylites.
Rod of Asclepius, in which the snakes, through ecdysis, symbolize healing.
In Judaism, the snake of brass is also a symbol of healing, of one's life being saved from imminent death (Book of Numbers 26:6–9).
In Christianity and Judaism, the snake makes its infamous appearance in the first book (Genesis 3:1) of the Bible when a serpent appears before the first couple Adam and Eve and tempts them with the forbidden fruit from the Tree of Knowledge. The snake returns in Exodus when Moses, as a sign of God's power, turns his staff into a snake and when Moses made the Nehushtan, a bronze snake on a pole that when looked at cured the people of bites from the snakes that plagued them in the desert. The serpent makes its final appearance symbolizing Satan in the Book of Revelation: "And he laid hold on the dragon the old serpent, which is the devil and Satan, and bound him for a thousand years." (Revelation 20:2)
In Neo-Paganism and Wicca, the snake is seen as a symbol of wisdom and knowledge.
Place names
Various locations in different countries are called for snakes, such as the Snake River in the United States and SnakeConsumption
Snake Meat, in a Taipei restaurant
In some Asian countries, the use of snakes in alcohol is also accepted. In such cases, the body of a snake or several snakes is left to steep in a jar or container of liquor. It is claimed that this makes the liquor stronger (as well as more expensive). One example of this is the Habu snake sometimes placed in the Okinawan liquor Awamori also known as "Habu Sake."[69]
U.S. Army Special Forces trainees are taught to catch, kill, and eat snakes during their survival course; this has earned them the nickname "snake eaters," which the video game Metal Gear Solid 3: Snake Eater may be implied to draw off of.
Snake wine (蛇酒) is an alcoholic beverage produced by infusing whole snakes in rice wine or grain alcohol. The drink was first recorded to have been consumed in China during the Western Zhou dynasty and considered an important curative and believed to reinvigorate a person according to Traditional Chinese medicine.[70]
Island (Black Sea) (derived from "Fidonisi," which means the same in Greek).
Reproduction
Terrestrial
Terrestrial lateral undulation is the most common mode of terrestrial locomotion for most snake species.[44] In this mode, the posteriorly moving waves push against contact points in the environment, such as rocks, twigs, irregularities in the soil, etc.[44] Each of these environmental objects, in turn, generates a reaction force directed forward and towards the midline of the snake, resulting in forward thrust while the lateral components cancel out.[48] The speed of this movement depends upon the density of push-points in the environment, with a medium density of about 8 along the snake's length being ideal.[46] The wave speed is precisely the same as the snake speed, and as a result, every point on the snake's body follows the path of the point ahead of it, allowing snakes to move through very dense vegetation and small openings.[48]Aquatic
Main article: Sea snake
Banded sea krait, Laticauda sp.
Sidewinding
See also: Sidewinding
A Mojave rattlesnake (Crotalus scutulatus) sidewinding.
Concertina
Main article: Concertina movement
When push-points are absent, but there is not enough space to use sidewinding because of lateral constraints, such as in tunnels, snakes rely on concertina locomotion.[44][52] In this mode, the snake braces the posterior portion of its body against the tunnel wall while the front of the snake extends and straightens.[51] The front portion then flexes and forms an anchor point, and the posterior is straightened and pulled forwards. This mode of locomotion is slow and very demanding, up to seven times the cost of laterally undulating over the same distance.[47] This high cost is due to the repeated stops and starts of portions of the body as well as the necessity of using active muscular effort to brace against the tunnel walls.Rectilinear
Main article: Rectilinear locomotion
The slowest mode of snake locomotion is rectilinear locomotion, which is also the only one where the snake does not need to bend its body laterally, though it may do so when turning.[53] In this mode, the belly scales are lifted and pulled forward before being placed down and the body pulled over them. Waves of movement and stasis pass posteriorly, resulting in a series of ripples in the skin.[53] The ribs of the snake do not move in this mode of locomotion and this method is most often used by large pythons, boas, and vipers when stalking prey across open ground as the snake's movements are subtle and harder to detect by their prey in this manner.[51]Other
The movement of snakes in arboreal habitats has only recently been studied.[54] While on tree branches, snakes use several modes of locomotion depending on species and bark texture.[54] In general, snakes will use a modified form of concertina locomotion on smooth branches, but will laterally undulate if contact points are available.[54] Snakes move faster on small branches and when contact points are present, in contrast to limbed animals, which do better on large branches with little 'clutter'.[54]Gliding snakes (Chrysopelea) of Southeast Asia launch themselves from branch tips, spreading their ribs and laterally undulating as they glide between trees.[51][55][56] These snakes can perform a controlled glide for hundreds of feet depending upon launch altitude and can even turn in midair.[51][55]
Reproduction
Although a wide range of reproductive modes are used by snakes, all snakes employ internal fertilization. This is accomplished by means of paired, forked hemipenes, which are stored, inverted, in the male's tail.[57] The hemipenes are often grooved, hooked, or spined in order to grip the walls of the female's cloaca.[57]Most species of snakes lay eggs, but most snakes abandon the eggs shortly after laying. However, a few species (such as the King cobra) actually construct nests and stay in the vicinity of the hatchlings after incubation.[57] Most pythons coil around their egg-clutches and remain with them until they hatch.[58] A female python will not leave the eggs, except to occasionally bask in the sun or drink water. She will even “shiver” to generate heat to incubate the eggs.[58]
Some species of snake are ovoviviparous and retain the eggs within their bodies until they are almost ready to hatch.[59][60] Recently, it has been confirmed that several species of snake are fully viviparous, such as the boa constrictor and green anaconda, nourishing their young through a placenta as well as a yolk sac, which is highly unusual among reptiles, or anything else outside of placental mammals.[59][60] Retention of eggs and live birth are most often associated with colder environments, as the retention of the young within the female.[57][60]
Interactions with humans
Bite
Main article: Snakebite
Vipera berus, one fang in glove with a small venom stain, the other still in place.
Documented deaths resulting from snake bites are uncommon. Nonfatal bites from venomous snakes may result in the need for amputation of a limb or part thereof. Of the roughly 725 species of venomous snakes worldwide, only 250 are able to kill a human with one bite. Australia averages only one fatal snake bite per year. In India, 250,000 snakebites are recorded in a single year, with as many as 50,000 recorded initial deaths.[64]
The treatment for a snakebite is as variable as the bite itself. The most common and effective method is through antivenom (or antivenin), a serum made from the venom of the snake. Some antivenom is species specific (monovalent) while some is made for use with multiple species in mind (polyvalent). In the United States for example, all species of venomous snakes are pit vipers, with the exception of the coral snake. To produce antivenom, a mixture of the venoms of the different species of rattlesnakes, copperheads, and cottonmouths is injected into the body of a horse in ever-increasing dosages until the horse is immunized. Blood is then extracted from the immunized horse; the serum is separated and further purified and freeze-dried. It is reconstituted with sterile water and becomes antivenom. For this reason, people who are allergic to horses cannot be treated using antivenom. Antivenom for the more dangerous species (such as mambas, taipans, and cobras) is made in a similar manner in India, South Africa, and Australia, although these antivenoms are species-specific.
Snake charmers
Main article: Snake charming
An Indian cobra in a basket with a snake charmer. These snakes are perhaps the most common subjects of snake charmings.
The Wildlife Protection Act of 1972 in India technically proscribes snake charming on grounds of reducing animal cruelty. Other snake charmers also have a snake and mongoose show, where both the animals have a mock fight; however, this is not very common, as the snakes, as well as the mongooses, may be seriously injured or killed. Snake charming as a profession is dying out in India because of competition from modern forms of entertainment and environment laws proscribing the practice.[65]
Trapping
The Irulas tribe of Andhra Pradesh and Tamil Nadu in India have been hunter-gatherers in the hot, dry plains forests, and have practiced the art of snake catching for generations. They have a vast knowledge of snakes in the field. They generally catch the snakes with the help of a simple stick. Earlier, the Irulas caught thousands of snakes for the snake-skin industry. After the complete ban on snake-skin industry in India and protection of all snakes under the Indian Wildlife (Protection) Act 1972, they formed the Irula Snake Catcher's Cooperative and switched to catching snakes for removal of venom, releasing them in the wild after four extractions. The venom so collected is used for producing life-saving antivenom, biomedical research and for other medicinal products.[66] The Irulas are also known to eat some of the snakes they catch and are very useful in rat extermination in the villages.Despite the existence of snake charmers, there have also been professional snake catchers or wranglers. Modern-day snake trapping involves a herpetologist using a long stick with a V- shaped end. Some television show hosts, like Bill Haast, Austin Stevens, Steve Irwin, and Jeff Corwin, prefer to catch them using bare hands.
Consumption
Perception
Perception
- Eyesight
- Snake vision varies greatly, from only being able to distinguish light from dark to keen eyesight, but the main trend is that their vision is adequate although not sharp, and allows them to track movements.[33] Generally, vision is best in arboreal snakes and weakest in burrowing snakes. Some snakes, such as the Asian vine snake (genus Ahaetulla), have binocular vision, with both eyes capable of focusing on the same point. Most snakes focus by moving the lens back and forth in relation to the retina, while in the other amniote groups, the lens is stretched.
- Smell
- Snakes use smell to track their prey. They smell by using their forked tongues to collect airborne particles, then passing them to the vomeronasal organ orJacobson's organ in the mouth for examination.[34] The fork in the tongue gives snakes a sort of directional sense of smell and taste simultaneously.[34] They keep their tongues constantly in motion, sampling particles from the air, ground, and water, analyzing the chemicals found, and determining the presence of prey or predators in the local environment.[34]
- Vibration sensitivity
- The part of the body in direct contact with the ground is very sensitive to vibration; thus, a snake can sense other animals approaching by detecting faint vibrations in the air and on the ground.[34]
- Infrared sensitivity
- Pit vipers, pythons, and some boas have infrared-sensitive receptors in deep grooves between the nostril and eye, although some have labial pits on their upper lip just below the nostrils (common in pythons), which allow them to "see" the radiated heat of warm-blooded prey mammals.[34]
Venom
See also: Snake venom
Cobras, vipers, and closely related species use venom to immobilize or kill their prey. The venom is modified saliva, delivered through fangs.[7]:243 The fangs of 'advanced' venomous snakes like viperids and elapids are hollow to inject venom more effectively, while the fangs of rear-fanged snakes such as the boomslang merely have a groove on the posterior edge to channel venom into the wound. Snake venoms are often prey specific, their role in self-defense is secondary.[7]:243 Venom, like all salivary secretions, is a predigestant that initiates the breakdown of food into soluble compounds, facilitating proper digestion. Even nonvenomous snake bites (like any animal bite) will cause tissue damage.[7]:209
Certain birds, mammals, and other snakes such as kingsnakes that prey on venomous snakes have developed resistance and even immunity to certain venoms.[7]:243 Venomous snakes include three families of snakes, and do not constitute a formal classification group used in taxonomy. The term poisonous snake is mostly incorrect; poison is inhaled or ingested, whereas venom is injected.[35] There are, however, two exceptions—Rhabdophis sequesters toxins from the toads it eats, then secretes them from nuchal glands to ward off predators, and a small population of garter snakes in Oregon retains enough toxin in their liver from the newts they eat to be effectively poisonous to local small predators such as crows and foxes.[36]
Snake venoms are complex mixtures of proteins, and are stored in poison glands at the back of the head.[36] In all venomous snakes, these glands open through ducts into grooved or hollow teeth in the upper jaw.[7]:243[35] These proteins can potentially be a mix of neurotoxins (which attack the nervous system), hemotoxins (which attack the circulatory system), cytotoxins, bungarotoxins and many other toxins that affect the body in different ways.[35] Almost all snake venom contains hyaluronidase, an enzyme that ensures rapid diffusion of the venom.[7]:243
Venomous snakes that use hemotoxins usually have the fangs that secrete the venom in the front of their mouths, making it easier for them to inject the venom into their victims.[35] Some snakes that use neurotoxins, such as the mangrove snake, have their fangs located in the back of their mouths, with the fangs curled backwards.[37] This makes it both difficult for the snake to use its venom and for scientists to milk them.[35] Elapid snakes, however, such as cobras and kraits are proteroglyphous, possessing hollow fangs that cannot be erected toward the front of their mouths and cannot "stab" like a viper; they must actually bite the victim.[7]:242
It has recently been suggested that all snakes may be venomous to a certain degree, with harmless snakes having weak venom and no fangs.[38] Most snakes currently labelled “nonvenomous” would still be considered harmless according to this theory, as these snakes either lack a delivery method for the venom or are simply incapable of delivering enough to endanger a human. This theory postulates snakes may have evolved from a common lizard ancestor that was venomous, from which venomous lizards like the gila monster and beaded lizard may also have derived, as well as the monitor lizards and now extinct mosasaurs. They share this venom clade with various other saurian species.
Venomous snakes are classified in two taxonomic families:
- Elapids – cobras including king cobras, kraits, mambas, Australian copperheads, sea snakes, and coral snakes.[37]
- Viperids – vipers, rattlesnakes, copperheads/cottonmouths, adders and bushmasters.[37]
- Colubrids – boomslangs, tree snakes, vine snakes, mangrove snakes, although not all colubrids are venomous.[7]:209[37]
Behavior
Feeding and diet
The snake's jaw is a complex structure. Contrary to the popular belief that snakes can dislocate their jaws, snakes have a very flexible lower jaw, the two halves of which are not rigidly attached, and numerous other joints in their skull (see snake skull), allowing them to open their mouths wide enough to swallow their prey whole, even if it is larger in diameter than the snake itself,[39] as snakes do not chew. For example, the African egg-eating snake has flexible jaws adapted for eating eggs much larger than the diameter of its head.[7]:81 This snake has no teeth, but does have bony protrusions on the inside edge of its spine, which it uses to break shells when it eats eggs.[7]:81
While the majority of snakes eat a variety of prey animals, there is some specialization by some species. King cobras and the Australian bandy-bandy consume other snakes. Pareas iwesakii and other snail-eating colubrids of subfamily Pareatinae have more teeth on the right side of their mouths than on the left, as the shells of their prey usually spiral clockwise[7]:184[40]
Some snakes have a venomous bite, which they use to kill their prey before eating it.[39][41] Other snakes kill their prey by constriction.[39] Still others swallow their prey whole and alive.[7]:81[39]
After eating, snakes become dormant while the process of digestion takes place.[42] Digestion is an intense activity, especially after consumption of large prey. In species that feed only sporadically, the entire intestine enters a reduced state between meals to conserve energy. The digestive system is then 'up-regulated' to full capacity within 48 hours of prey consumption. Being ectothermic (“cold-blooded”), the surrounding temperature plays a large role in snake digestion. The ideal temperature for snakes to digest is 30 °C (86 °F). So much metabolic energy is involved in a snake's digestion that in the Mexican rattlesnake (Crotalus durissus), surface body temperature increases by as much as 1.2 °C (2.2 °F) during the digestive process.[43] Because of this, a snake disturbed after having eaten recently will often regurgitate its prey to be able to escape the perceived threat. When undisturbed, the digestive process is highly efficient, with the snake's digestive enzymes dissolving and absorbing everything but the prey's hair (or feathers) and claws, which are excreted along with waste.
Locomotion
The lack of limbs does not impede the movement of snakes. They have developed several different modes of locomotion to deal with particular environments. Unlike the gaits of limbed animals, which form a continuum, each mode of snake locomotion is discrete and distinct from the others; transitions between modes are abrupt.[44][45]Lateral undulation
Main article: Undulatory locomotion
Lateral undulation is the sole mode of aquatic locomotion, and the most common mode of terrestrial locomotion.[45] In this mode, the body of the snake alternately flexes to the left and right, resulting in a series of rearward-moving "waves."[44] While this movement appears rapid, snakes have rarely been documented moving faster than two body-lengths per second, often much less.[46] This mode of movement has the same net cost of transport (calories burned per meter moved) as running in lizards of the same mass.[47]
Biology
When compared, the skeletons of snakes are radically different from those of most other reptiles (such as the turtle, right), being made up almost entirely of an extended ribcage.
Skeleton
The vertebral column consists of anywhere between 200–400 (or more) vertebrae. Tail vertebrae are comparatively few in number (often less than 20% of the total) and lack ribs, while body vertebrae each have two ribs articulating with them. The vertebrae have projections that allow for strong muscle attachment enabling locomotion without limbs. Autotomy of the tail, a feature found in some lizards is absent in most snakes.[21] Caudal autotomy in snakes is rare and is intervertebral, unlike that in lizards, which is intravertebral—that is, the break happens along a predefined fracture plane present on a vertebra.[22][23]
In some snakes, most notably boas and pythons, there are vestiges of the hindlimbs in the form of a pair of pelvic spurs. These small, claw-like protrusions on each side of the cloaca are the external portion of the vestigial hindlimb skeleton, which includes the remains of an ilium and femur.
Internal organs
The vestigial left lung is often small or sometimes even absent, as snakes' tubular bodies require all of their organs to be long and thin.[24] In the majority of species, only one lung is functional. This lung contains a vascularized anterior portion and a posterior portion that does not function in gas exchange.[24] This 'saccular lung' is used for hydrostatic purposes to adjust buoyancy in some aquatic snakes and its function remains unknown in terrestrial species.[24] Many organs that are paired, such as kidneys or reproductive organs, are staggered within the body, with one located ahead of the other.[24] Snakes have no lymph nodes.[24]
Size
The now extinct Titanoboa cerrejonensis snakes found were 12–15 meters (39–49 ft) in length. By comparison, the largest extant snakes are the reticulated python, which measures about 9 meters (30 ft) long, and the anaconda, which measures about 7.5 meters (25 ft) long[25] and is considered the heaviest snake on Earth. At the other end of the scale, the smallest extant snake is Leptotyphlops carlae, with a length of about 10 centimeters (4 in).[26] Most snakes are fairly small animals, approximately 3 feet in length.[27] A line diagram from G.A. Boulenger's Fauna of British India (1890) illustrating the terminology of shields on the head of a snake.
Skin
Main article: Snake scales
The skin of a snake is covered in scales. Contrary to the popular notion of snakes being slimy because of possible confusion of snakes with worms, snakeskin has a smooth, dry texture. Most snakes use specialized belly scales to travel, gripping surfaces. The body scales may be smooth, keeled, or granular. The eyelids of a snake are transparent "spectacle" scales, which remain permanently closed, also known as brille.The shedding of scales is called ecdysis (or in normal usage, moulting or sloughing). In the case of snakes, the complete outer layer of skin is shed in one layer.[28] Snake scales are not discrete, but extensions of the epidermis—hence they are not shed separately but as a complete outer layer during each moult, akin to a sock being turned inside out.[29]
The shape and number of scales on the head, back, and belly are often characteristic and used for taxonomic purposes. Scales are named mainly according to their positions on the body. In "advanced" (Caenophidian) snakes, the broad belly scales and rows of dorsal scales correspond to the vertebrae, allowing scientists to count the vertebrae without dissection.
Moulting
Moulting occurs periodically throughout a snake's life. Before a moult, the snake stops eating and often hides or moves to a safe place. Just before shedding, the skin becomes dull and dry looking and the eyes become cloudy or blue-colored. The inner surface of the old skin liquefies. This causes the old skin to separate from the new skin beneath it. After a few days, the eyes clear and the snake "crawls" out of its old skin. The old skin breaks near the mouth and the snake wriggles out, aided by rubbing against rough surfaces. In many cases, the cast skin peels backward over the body from head to tail in one piece, like pulling a sock off inside-out. A new, larger, brighter layer of skin has formed underneath.[29][31]
An older snake may shed its skin only once or twice a year. But a younger snake, still growing, may shed up to four times a year.[31] The discarded skin gives a perfect imprint of the scale pattern, and it is usually possible to identify the snake if the discarded skin is reasonably intact.[29] This periodic renewal has led to the snake being a symbol of healing and medicine, as pictured in the Rod of Asclepius.[32]
Perception
Subscribe to:
Comments (Atom)